Fitted Q-iteration in continuous action-space MDPs

We consider continuous state, continuous action batch reinforcement learning where the goal is to learn a good policy from a sufficiently rich trajectory generated by another policy. We study a variant of fitted Q-iteration, where the greedy action selection is replaced by searching for a policy in a restricted set of candidate policies by maximizing the average action values. We provide a rigorous theoretical analysis of this algorithm, proving what we believe is the first finite-time bounds for value-function based algorithms for continuous state- and action-space problems.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here