Fitting Low-Rank Tensors in Constant Time

NeurIPS 2017  ·  Kohei Hayashi, Yuichi Yoshida ·

In this paper, we develop an algorithm that approximates the residual error of Tucker decomposition, one of the most popular tensor decomposition methods, with a provable guarantee. Given an order-$K$ tensor $X\in\mathbb{R}^{N_1\times\cdots\times N_K}$, our algorithm randomly samples a constant number $s$ of indices for each mode and creates a ``mini'' tensor $\tilde{X}\in\mathbb{R}^{s\times\cdots\times s}$, whose elements are given by the intersection of the sampled indices on $X$. Then, we show that the residual error of the Tucker decomposition of $\tilde{X}$ is sufficiently close to that of $X$ with high probability. This result implies that we can figure out how much we can fit a low-rank tensor to $X$ \emph{in constant time}, regardless of the size of $X$. This is useful for guessing the favorable rank of Tucker decomposition. Finally, we demonstrate how the sampling method works quickly and accurately using multiple real datasets.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here