Paper

FLARe: Forecasting by Learning Anticipated Representations

Computational models that forecast the progression of Alzheimer's disease at the patient level are extremely useful tools for identifying high risk cohorts for early intervention and treatment planning. The state-of-the-art work in this area proposes models that forecast by using latent representations extracted from the longitudinal data across multiple modalities, including volumetric information extracted from medical scans and demographic info. These models incorporate the time horizon, which is the amount of time between the last recorded visit and the future visit, by directly concatenating a representation of it to the data latent representation. In this paper, we present a model which generates a sequence of latent representations of the patient status across the time horizon, providing more informative modeling of the temporal relationships between the patient's history and future visits. Our proposed model outperforms the baseline in terms of forecasting accuracy and F1 score with the added benefit of robustly handling missing visits.

Results in Papers With Code
(↓ scroll down to see all results)