Flexible-Cm GAN: Towards Precise 3D Dose Prediction in Radiotherapy

Deep learning has been utilized in knowledge-based radiotherapy planning in which a system trained with a set of clinically approved plans is employed to infer a three-dimensional dose map for a given new patient. However, previous deep methods are primarily limited to simple scenarios, e.g., a fixed planning type or a consistent beam angle configuration. This in fact limits the usability of such approaches and makes them not generalizable over a larger set of clinical scenarios. Herein, we propose a novel conditional generative model, Flexible-C^m GAN, utilizing additional information regarding planning types and various beam geometries. A miss-consistency loss is proposed to deal with the challenge of having a limited set of conditions on the input data, e.g., incomplete training samples. To address the challenges of including clinical preferences, we derive a differentiable shift-dose-volume loss to incorporate the well-known dose-volume histogram constraints. During inference, users can flexibly choose a specific planning type and a set of beam angles to meet the clinical requirements. We conduct experiments on an illustrative face dataset to show the motivation of Flexible-C^m GAN and further validate our model's potential clinical values with two radiotherapy datasets. The results demonstrate the superior performance of the proposed method in a practical heterogeneous radiotherapy planning application compared to existing deep learning-based approaches.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here