Flexible Conditional Image Generation of Missing Data with Learned Mental Maps

29 Aug 2019  ·  Benjamin Hou, Athanasios Vlontzos, Amir Alansary, Daniel Rueckert, Bernhard Kainz ·

Real-world settings often do not allow acquisition of high-resolution volumetric images for accurate morphological assessment and diagnostic. In clinical practice it is frequently common to acquire only sparse data (e.g. individual slices) for initial diagnostic decision making. Thereby, physicians rely on their prior knowledge (or mental maps) of the human anatomy to extrapolate the underlying 3D information. Accurate mental maps require years of anatomy training, which in the first instance relies on normative learning, i.e. excluding pathology. In this paper, we leverage Bayesian Deep Learning and environment mapping to generate full volumetric anatomy representations from none to a small, sparse set of slices. We evaluate proof of concept implementations based on Generative Query Networks (GQN) and Conditional BRUNO using abdominal CT and brain MRI as well as in a clinical application involving sparse, motion-corrupted MR acquisition for fetal imaging. Our approach allows to reconstruct 3D volumes from 1 to 4 tomographic slices, with a SSIM of 0.7+ and cross-correlation of 0.8+ compared to the 3D ground truth.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here