Flow-based sampling for multimodal and extended-mode distributions in lattice field theory

Recent results have demonstrated that samplers constructed with flow-based generative models are a promising new approach for configuration generation in lattice field theory. In this paper, we present a set of training- and architecture-based methods to construct flow models for targets with multiple separated modes (i.e.~vacua) as well as targets with extended/continuous modes. We demonstrate the application of these methods to modeling two-dimensional real and complex scalar field theories in their symmetry-broken phases. In this context we investigate different flow-based sampling algorithms, including a composite sampling algorithm where flow-based proposals are occasionally augmented by applying updates using traditional algorithms like HMC.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here