FlowDelta: Modeling Flow Information Gain in Reasoning for Conversational Machine Comprehension

WS 2019  ·  Yi-Ting Yeh, Yun-Nung Chen ·

Conversational machine comprehension requires deep understanding of the dialogue flow, and the prior work proposed FlowQA to implicitly model the context representations in reasoning for better understanding. This paper proposes to explicitly model the information gain through dialogue reasoning in order to allow the model to focus on more informative cues. The proposed model achieves state-of-the-art performance in a conversational QA dataset QuAC and sequential instruction understanding dataset SCONE, which shows the effectiveness of the proposed mechanism and demonstrates its capability of generalization to different QA models and tasks.

PDF Abstract WS 2019 PDF WS 2019 Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here