FM-AE: Frequency-masked Multimodal Autoencoder for Zinc Electrolysis Plate Contact Abnormality Detection

8 Jan 2024  ·  Canzong Zhou, Can Zhou, Hongqiu Zhu, Tianhao Liu ·

Zinc electrolysis is one of the key processes in zinc smelting, and maintaining stable operation of zinc electrolysis is an important factor in ensuring production efficiency and product quality. However, poor contact between the zinc electrolysis cathode and the anode is a common problem that leads to reduced production efficiency and damage to the electrolysis cell. Therefore, online monitoring of the contact status of the plates is crucial for ensuring production quality and efficiency. To address this issue, we propose an end-to-end network, the Frequency-masked Multimodal Autoencoder (FM-AE). This method takes the cell voltage signal and infrared image information as input, and through automatic encoding, fuses the two features together and predicts the poor contact status of the plates through a cascaded detector. Experimental results show that the proposed method maintains high accuracy (86.2%) while having good robustness and generalization ability, effectively detecting poor contact status of the zinc electrolysis cell, providing strong support for production practice.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.