FOLD-TR: A Scalable and Efficient Inductive Learning Algorithm for Learning To Rank

15 Jun 2022  ·  Huaduo Wang, Gopal Gupta ·

FOLD-R++ is a new inductive learning algorithm for binary classification tasks. It generates an (explainable) normal logic program for mixed type (numerical and categorical) data. We present a customized FOLD-R++ algorithm with the ranking framework, called FOLD-TR, that aims to rank new items following the ranking pattern in the training data. Like FOLD-R++, the FOLD-TR algorithm is able to handle mixed-type data directly and provide native justification to explain the comparison between a pair of items.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here