Forecasting Emerging Trends from Scientific Literature

Text analysis methods for the automatic identification of emerging technologies by analyzing the scientific publications, are gaining attention because of their socio-economic impact. The approaches so far have been mainly focused on retrospective analysis by mapping scientific topic evolution over time. We propose regression based approaches to predict future keyword distribution. The prediction is based on historical data of the keywords, which in our case, are LREC conference proceedings. Considering the insufficient number of data points available from LREC proceedings, we do not employ standard time series forecasting methods. We form a dataset by extracting the keywords from previous year proceedings and quantify their yearly relevance using tf-idf scores. This dataset additionally contains ranked lists of related keywords and experts for each keyword.

PDF Abstract LREC 2016 PDF LREC 2016 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here