Forgery Attack Detection in Surveillance Video Streams Using Wi-Fi Channel State Information

24 Jan 2022  ·  Yong Huang, Xiang Li, Wei Wang, Tao Jiang, Qian Zhang ·

The cybersecurity breaches expose surveillance video streams to forgery attacks, under which authentic streams are falsified to hide unauthorized activities. Traditional video forensics approaches can localize forgery traces using spatial-temporal analysis on relatively long video clips, while falling short in real-time forgery detection. The recent work correlates time-series camera and wireless signals to detect looped videos but cannot realize fine-grained forgery localization. To overcome these limitations, we propose Secure-Pose, which exploits the pervasive coexistence of surveillance and Wi-Fi infrastructures to defend against video forgery attacks in a real-time and fine-grained manner. We observe that coexisting camera and Wi-Fi signals convey common human semantic information and forgery attacks on video streams will decouple such information correspondence. Particularly, retrievable human pose features are first extracted from concurrent video and Wi-Fi channel state information (CSI) streams. Then, a lightweight detection network is developed to accurately discover forgery attacks and an efficient localization algorithm is devised to seamlessly track forgery traces in video streams. We implement Secure-Pose using one Logitech camera and two Intel 5300 NICs and evaluate it in different environments. Secure-Pose achieves a high detection accuracy of 98.7% and localizes abnormal objects under playback and tampering attacks.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here