Forgetting Outside the Box: Scrubbing Deep Networks of Information Accessible from Input-Output Observations

We describe a procedure for removing dependency on a cohort of training data from a trained deep network that improves upon and generalizes previous methods to different readout functions and can be extended to ensure forgetting in the activations of the network. We introduce a new bound on how much information can be extracted per query about the forgotten cohort from a black-box network for which only the input-output behavior is observed... The proposed forgetting procedure has a deterministic part derived from the differential equations of a linearized version of the model, and a stochastic part that ensures information destruction by adding noise tailored to the geometry of the loss landscape. We exploit the connections between the activation and weight dynamics of a DNN inspired by Neural Tangent Kernels to compute the information in the activations. read more

PDF Abstract ECCV 2020 PDF ECCV 2020 Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here