FORML: Learning to Reweight Data for Fairness

3 Feb 2022  ·  Bobby Yan, Skyler Seto, Nicholas Apostoloff ·

Machine learning models are trained to minimize the mean loss for a single metric, and thus typically do not consider fairness and robustness. Neglecting such metrics in training can make these models prone to fairness violations when training data are imbalanced or test distributions differ. This work introduces Fairness Optimized Reweighting via Meta-Learning (FORML), a training algorithm that balances fairness and robustness with accuracy by jointly learning training sample weights and neural network parameters. The approach increases model fairness by learning to balance the contributions from both over- and under-represented sub-groups through dynamic reweighting of the data learned from a user-specified held-out set representative of the distribution under which fairness is desired. FORML improves equality of opportunity fairness criteria on image classification tasks, reduces bias of corrupted labels, and facilitates building more fair datasets via data condensation. These improvements are achieved without pre-processing data or post-processing model outputs, without learning an additional weighting function, without changing model architecture, and while maintaining accuracy on the original predictive metric.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here