Foundation Model Based Native AI Framework in 6G with Cloud-Edge-End Collaboration

Future wireless communication networks are in a position to move beyond data-centric, device-oriented connectivity and offer intelligent, immersive experiences based on task-oriented connections, especially in the context of the thriving development of pre-trained foundation models (PFM) and the evolving vision of 6G native artificial intelligence (AI). Therefore, redefining modes of collaboration between devices and servers and constructing native intelligence libraries become critically important in 6G. In this paper, we analyze the challenges of achieving 6G native AI from the perspectives of data, intelligence, and networks. Then, we propose a 6G native AI framework based on foundation models, provide a customization approach for intent-aware PFM, present a construction of a task-oriented AI toolkit, and outline a novel cloud-edge-end collaboration paradigm. As a practical use case, we apply this framework for orchestration, achieving the maximum sum rate within a wireless communication system, and presenting preliminary evaluation results. Finally, we outline research directions for achieving native AI in 6G.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here