Fourier-based Video Prediction through Relational Object Motion

12 Oct 2021  ·  Malte Mosbach, Sven Behnke ·

The ability to predict future outcomes conditioned on observed video frames is crucial for intelligent decision-making in autonomous systems. Recently, deep recurrent architectures have been applied to the task of video prediction. However, this often results in blurry predictions and requires tedious training on large datasets. Here, we explore a different approach by (1) using frequency-domain approaches for video prediction and (2) explicitly inferring object-motion relationships in the observed scene. The resulting predictions are consistent with the observed dynamics in a scene and do not suffer from blur.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here