Fracture Detection in Wrist X-ray Images Using Deep Learning-Based Object Detection Models

Hospitals, especially their emergency services, receive a high number of wrist fracture cases. For correct diagnosis and proper treatment of these, images obtained from various medical equipment must be viewed by physicians, along with the patients medical records and physical examination. The aim of this study is to perform fracture detection by use of deep learning on wrist Xray images to support physicians in the diagnosis of these fractures, particularly in the emergency services. Using SABL, RegNet, RetinaNet, PAA, Libra R_CNN, FSAF, Faster R_CNN, Dynamic R_CNN and DCN deep learning based object detection models with various backbones, 20 different fracture detection procedures were performed on Gazi University Hospitals dataset of wrist Xray images. To further improve these procedures, five different ensemble models were developed and then used to reform an ensemble model to develop a unique detection model, wrist fracture detection_combo (WFD_C). From 26 different models for fracture detection, the highest detection result obtained was 0.8639 average precision (AP50) in the WFD-C model. Huawei Turkey R&D Center supports this study within the scope of the ongoing cooperation project coded 071813 between Gazi University, Huawei and Medskor. Code is available at https://github.com/fatihuysal88/wrist-d

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods