Fraud Detection using Data-Driven approach

8 Sep 2020  ·  Arianit Mehana, Krenare Pireva Nuci ·

The extensive use of the internet is continuously drifting businesses to incorporate their services in the online environment. One of the first spectrums to embrace this evolution was the banking sector... In fact, the first known online banking service came in 1980. It was deployed from a community bank located in Knoxville, called the United American Bank. Since then, internet banking has been offering ease and efficiency to costumers in completing their daily banking tasks. The ever increasing use of internet banking and a large number of online transactions increased fraudulent behavior also. As if fraud increase was not enough, the massive number of online transactions further increased the data complexity. Modern data sources are not only complex but generated at high speed and in real-time as well. This presents a serious problem and a definite reason why more advanced solutions are desired to protect financial service companies and credit cardholders. Therefore, this research paper aims to construct an efficient fraud detection model which is adaptive to customer behavior changes and tends to decrease fraud manipulation, by detecting and filtering fraud in real-time. In order to achieve this aim, a review of various methods is conducted, adding above a personal experience working in the Banking sector, specifically in the Fraud Detection office. Unlike the majority of reviewed methods, the proposed model in this research paper is able to detect fraud in the moment of occurrence using an incremental classifier. The evaluation of synthetic data, based on fraud scenarios selected in collaboration with domain experts that replicate typical, real-world attacks, shows that this approach correctly ranks complex frauds. In particular, our proposal detects fraudulent behavior and anomalies with up to 97\% detection rate while maintaining a satisfyingly low cost. read more

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here