Free-Space Optical Channel Turbulence Prediction: A Machine Learning Approach

Channel turbulence presents a formidable obstacle for free-space optical (FSO) communication. Anticipation of turbulence levels is highly important for mitigating disruptions. We study the application of machine learning (ML) to FSO data streams to rapidly predict channel turbulence levels with no additional sensing hardware. An optical bit stream was transmitted through a controlled channel in the lab under six distinct turbulence levels, and the efficacy of using ML to classify turbulence levels was examined. ML-based turbulence level classification was found to be >98% accurate with multiple ML training parameters, but highly dependent upon the timescale of changes between turbulence levels.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here