Frequency Domain-based Perceptual Loss for Super Resolution

23 Jul 2020 Shane D. Sims

We introduce Frequency Domain Perceptual Loss (FDPL), a loss function for single image super resolution (SR). Unlike previous loss functions used to train SR models, which are all calculated in the pixel (spatial) domain, FDPL is computed in the frequency domain... (read more)

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet