Frequency Fitness Assignment: Making Optimization Algorithms Invariant under Bijective Transformations of the Objective Function Value

6 Jan 2020  ·  Thomas Weise, Zhize Wu, Xinlu Li, Yan Chen ·

Under Frequency Fitness Assignment (FFA), the fitness corresponding to an objective value is its encounter frequency in fitness assignment steps and is subject to minimization. FFA renders optimization processes invariant under bijective transformations of the objective function value. On TwoMax, Jump, and Trap functions of dimension s, the classical (1+1)-EA with standard mutation at rate 1/s can have expected runtimes exponential in s. In our experiments, a (1+1)-FEA, the same algorithm but using FFA, exhibits mean runtimes that seem to scale as $s^2\ln{s}$. Since Jump and Trap are bijective transformations of OneMax, it behaves identical on all three. On OneMax, LeadingOnes, and Plateau problems, it seems to be slower than the (1+1)-EA by a factor linear in s. The (1+1)-FEA performs much better than the (1+1)-EA on W-Model and MaxSat instances. We further verify the bijection invariance by applying the Md5 checksum computation as transformation to some of the above problems and yield the same behaviors. Finally, we show that FFA can improve the performance of a memetic algorithm for job shop scheduling.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here