From exemplar to copy: the scribal appropriation of a Hadewijch manuscript computationally explored

25 Oct 2022  ·  Wouter Haverals, Mike Kestemont ·

This study is devoted to two of the oldest known manuscripts in which the oeuvre of the medieval mystical author Hadewijch has been preserved: Brussels, KBR, 2879-2880 (ms. A) and Brussels, KBR, 2877-2878 (ms. B). On the basis of codicological and contextual arguments, it is assumed that the scribe who produced B used A as an exemplar. While the similarities in both layout and content between the two manuscripts are striking, the present article seeks to identify the differences. After all, regardless of the intention to produce a copy that closely follows the exemplar, subtle linguistic variation is apparent. Divergences relate to spelling conventions, but also to the way in which words are abbreviated (and the extent to which abbreviations occur). The present study investigates the spelling profiles of the scribes who produced mss. A and B in a computational way. In the first part of this study, we will present both manuscripts in more detail, after which we will consider prior research carried out on scribal profiling. The current study both builds and expands on Kestemont (2015). Next, we outline the methodology used to analyse and measure the degree of scribal appropriation that took place when ms. B was copied off the exemplar ms. A. After this, we will discuss the results obtained, focusing on the scribal variation that can be found both at the level of individual words and n-grams. To this end, we use machine learning to identify the most distinctive features that separate manuscript A from B. Finally, we look at possible diachronic trends in the appropriation by B's scribe of his exemplar. We argue that scribal takeovers in the exemplar impacts the practice of the copying scribe, while transitions to a different content matter cause little to no effect.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here