From Noise Modeling to Blind Image Denoising

CVPR 2016  ·  Fengyuan Zhu, Guangyong Chen, Pheng-Ann Heng ·

Traditional image denoising algorithms always assume the noise to be homogeneous white Gaussian distributed. However, the noise on real images can be much more complex empirically. This paper addresses this problem and proposes a novel blind image denoising algorithm which can cope with real-world noisy images even when the noise model is not provided. It is realized by modeling image noise with mixture of Gaussian distribution (MoG) which can approximate large varieties of continuous distributions. As the number of components for MoG is unknown practically, this work adopts Bayesian nonparametric technique and proposes a novel Low-rank MoG filter (LR-MoG) to recover clean signals (patches) from noisy ones contaminated by MoG noise. Based on LR-MoG, a novel blind image denoising approach is developed. To test the proposed method, this study conducts extensive experiments on synthesis and real images. Our method achieves the state-of-the-art performance consistently.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here