Fruit and Vegetable Identification Using Machine Learning for Retail Applications

23 Oct 2018  ·  Frida Femling, Adam Olsson, Fernando Alonso-Fernandez ·

This paper describes an approach of creating a system identifying fruit and vegetables in the retail market using images captured with a video camera attached to the system. The system helps the customers to label desired fruits and vegetables with a price according to its weight. The purpose of the system is to minimize the number of human computer interactions, speed up the identification process and improve the usability of the graphical user interface compared to existing manual systems. The hardware of the system is constituted by a Raspberry Pi, camera, display, load cell and a case. To classify an object, different convolutional neural networks have been tested and retrained. To test the usability, a heuristic evaluation has been performed with several users, concluding that the implemented system is more user friendly compared to existing systems.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here