Full Page Handwriting Recognition via Image to Sequence Extraction

11 Mar 2021  ·  Sumeet S. Singh, Sergey Karayev ·

We present a Neural Network based Handwritten Text Recognition (HTR) model architecture that can be trained to recognize full pages of handwritten or printed text without image segmentation. Being based on Image to Sequence architecture, it can extract text present in an image and then sequence it correctly without imposing any constraints regarding orientation, layout and size of text and non-text. Further, it can also be trained to generate auxiliary markup related to formatting, layout and content. We use character level vocabulary, thereby enabling language and terminology of any subject. The model achieves a new state-of-art in paragraph level recognition on the IAM dataset. When evaluated on scans of real world handwritten free form test answers - beset with curved and slanted lines, drawings, tables, math, chemistry and other symbols - it performs better than all commercially available HTR cloud APIs. It is deployed in production as part of a commercial web application.

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here