Full-stack evaluation of Machine Learning inference workloads for RISC-V systems

24 May 2024  ·  Debjyoti Bhattacharjee, Anmol, Tommaso Marinelli, Karan Pathak, Peter Kourzanov ·

Architectural simulators hold a vital role in RISC-V research, providing a crucial platform for workload evaluation without the need for costly physical prototypes. They serve as a dynamic environment for exploring innovative architectural concepts, enabling swift iteration and thorough analysis of performance metrics. As deep learning algorithms become increasingly pervasive, it is essential to benchmark new architectures with machine learning workloads. The diverse computational kernels used in deep learning algorithms highlight the necessity for a comprehensive compilation toolchain to map to target hardware platforms. This study evaluates the performance of a wide array of machine learning workloads on RISC-V architectures using gem5, an open-source architectural simulator. Leveraging an open-source compilation toolchain based on Multi-Level Intermediate Representation (MLIR), the research presents benchmarking results specifically focused on deep learning inference workloads. Additionally, the study sheds light on current limitations of gem5 when simulating RISC-V architectures, offering insights for future development and refinement.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here