Fully Non-Homogeneous Atmospheric Scattering Modeling with Convolutional Neural Networks for Single Image Dehazing

25 Aug 2021  ·  Cong Wang, Yan Huang, Yuexian Zou, Yong Xu ·

In recent years, single image dehazing models (SIDM) based on atmospheric scattering model (ASM) have achieved remarkable results. However, it is noted that ASM-based SIDM degrades its performance in dehazing real world hazy images due to the limited modelling ability of ASM where the atmospheric light factor (ALF) and the angular scattering coefficient (ASC) are assumed as constants for one image. Obviously, the hazy images taken in real world cannot always satisfy this assumption. Such generating modelling mismatch between the real-world images and ASM sets up the upper bound of trained ASM-based SIDM for dehazing. Bearing this in mind, in this study, a new fully non-homogeneous atmospheric scattering model (FNH-ASM) is proposed for well modeling the hazy images under complex conditions where ALF and ASC are pixel dependent. However, FNH-ASM brings difficulty in practical application. In FNH-ASM based SIDM, the estimation bias of parameters at different positions lead to different distortion of dehazing result. Hence, in order to reduce the influence of parameter estimation bias on dehazing results, two new cost sensitive loss functions, beta-Loss and D-Loss, are innovatively developed for limiting the parameter bias of sensitive positions that have a greater impact on the dehazing result. In the end, based on FNH-ASM, an end-to-end CNN-based dehazing network, FNHD-Net, is developed, which applies beta-Loss and D-Loss. Experimental results demonstrate the effectiveness and superiority of our proposed FNHD-Net for dehazing on both synthetic and real-world images. And the performance improvement of our method increases more obviously in dense and heterogeneous haze scenes.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here