Function Driven Diffusion for Personalized Counterfactual Inference

31 Oct 2016  ·  Alexander Cloninger ·

We consider the problem of constructing diffusion operators high dimensional data $X$ to address counterfactual functions $F$, such as individualized treatment effectiveness. We propose and construct a new diffusion metric $K_F$ that captures both the local geometry of $X$ and the directions of variance of $F$. The resulting diffusion metric is then used to define a localized filtration of $F$ and answer counterfactual questions pointwise, particularly in situations such as drug trials where an individual patient's outcomes cannot be studied long term both taking and not taking a medication. We validate the model on synthetic and real world clinical trials, and create individualized notions of benefit from treatment.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here