Fundamental limits for learning hidden Markov model parameters

24 Jun 2021  ·  Kweku Abraham, Zacharie Naulet, Elisabeth Gassiat ·

We study the frontier between learnable and unlearnable hidden Markov models (HMMs). HMMs are flexible tools for clustering dependent data coming from unknown populations. The model parameters are known to be fully identifiable (up to label-switching) without any modeling assumption on the distributions of the populations as soon as the clusters are distinct and the hidden chain is ergodic with a full rank transition matrix. In the limit as any one of these conditions fails, it becomes impossible in general to identify parameters. For a chain with two hidden states we prove nonasymptotic minimax upper and lower bounds, matching up to constants, which exhibit thresholds at which the parameters become learnable. We also provide an upper bound on the relative entropy rate for parameters in a neighbourhood of the unlearnable region which may have interest in itself.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here