funSentiment at SemEval-2017 Task 4: Topic-Based Message Sentiment Classification by Exploiting Word Embeddings, Text Features and Target Contexts

This paper describes the approach we used for SemEval-2017 Task 4: Sentiment Analysis in Twitter. Topic-based (target-dependent) sentiment analysis has become attractive and been used in some applications recently, but it is still a challenging research task. In our approach, we take the left and right context of a target into consideration when generating polarity classification features. We use two types of word embeddings in our classifiers: the general word embeddings learned from 200 million tweets, and sentiment-specific word embeddings learned from 10 million tweets using distance supervision. We also incorporate a text feature model in our algorithm. This model produces features based on text negation, tf.idf weighting scheme, and a Rocchio text classification method. We participated in four subtasks (B, C, D {\&} E for English), all of which are about topic-based message polarity classification. Our team is ranked {\#}6 in subtask B, {\#}3 by MAEu and {\#}9 by MAEm in subtask C, {\#}3 using RAE and {\#}6 using KLD in subtask D, and {\#}3 in subtask E.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here