Fusing Physics-based and Deep Learning Models for Prognostics

27 Oct 2020  ·  Chao Manuel Arias, Kulkarni Chetan, Goebel Kai, Fink Olga ·

Physics-based and data-driven models for remaining useful lifetime (RUL) prediction typically suffer from two major challenges that limit their applicability to complex real-world domains: (1) incompleteness of physics-based models and (2) limited representativeness of the training dataset for data-driven models. Combining the advantages of these two directions while overcoming some of their limitations, we propose a novel hybrid framework for fusing the information from physics-based performance models with deep learning algorithms for prognostics of complex safety-critical systems under real-world scenarios. In the proposed framework, we use physics-based performance models to infer unobservable model parameters related to a system's components health solving a calibration problem. These parameters are subsequently combined with sensor readings and used as input to a deep neural network to generate a data-driven prognostics model with physics-augmented features. The performance of the hybrid framework is evaluated on an extensive case study comprising run-to-failure degradation trajectories from a fleet of nine turbofan engines under real flight conditions. The experimental results show that the hybrid framework outperforms purely data-driven approaches by extending the prediction horizon by nearly 127\%. Furthermore, it requires less training data and is less sensitive to the limited representativeness of the dataset compared to purely data-driven approaches.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here