Fusion++: Volumetric Object-Level SLAM

25 Aug 2018  ·  John McCormac, Ronald Clark, Michael Bloesch, Andrew J. Davison, Stefan Leutenegger ·

We propose an online object-level SLAM system which builds a persistent and accurate 3D graph map of arbitrary reconstructed objects. As an RGB-D camera browses a cluttered indoor scene, Mask-RCNN instance segmentations are used to initialise compact per-object Truncated Signed Distance Function (TSDF) reconstructions with object size-dependent resolutions and a novel 3D foreground mask. Reconstructed objects are stored in an optimisable 6DoF pose graph which is our only persistent map representation. Objects are incrementally refined via depth fusion, and are used for tracking, relocalisation and loop closure detection. Loop closures cause adjustments in the relative pose estimates of object instances, but no intra-object warping. Each object also carries semantic information which is refined over time and an existence probability to account for spurious instance predictions. We demonstrate our approach on a hand-held RGB-D sequence from a cluttered office scene with a large number and variety of object instances, highlighting how the system closes loops and makes good use of existing objects on repeated loops. We quantitatively evaluate the trajectory error of our system against a baseline approach on the RGB-D SLAM benchmark, and qualitatively compare reconstruction quality of discovered objects on the YCB video dataset. Performance evaluation shows our approach is highly memory efficient and runs online at 4-8Hz (excluding relocalisation) despite not being optimised at the software level.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here