Fuzzy Clustering with Similarity Queries

The fuzzy or soft $k$-means objective is a popular generalization of the well-known $k$-means problem, extending the clustering capability of the $k$-means to datasets that are uncertain, vague, and otherwise hard to cluster. In this paper, we propose a semi-supervised active clustering framework, where the learner is allowed to interact with an oracle (domain expert), asking for the similarity between a certain set of chosen items... We study the query and computational complexities of clustering in this framework. We prove that having a few of such similarity queries enables one to get a polynomial-time approximation algorithm to an otherwise conjecturally NP-hard problem. In particular, we provide algorithms for fuzzy clustering in this setting that asks $O(\mathsf{poly}(k)\log n)$ similarity queries and run with polynomial-time-complexity, where $n$ is the number of items. The fuzzy $k$-means objective is nonconvex, with $k$-means as a special case, and is equivalent to some other generic nonconvex problem such as non-negative matrix factorization. The ubiquitous Lloyd-type algorithms (or alternating minimization algorithms) can get stuck at a local minimum. Our results show that by making a few similarity queries, the problem becomes easier to solve. Finally, we test our algorithms over real-world datasets, showing their effectiveness in real-world applications. read more

PDF Abstract NeurIPS 2021 PDF NeurIPS 2021 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here