$γ$-ABC: Outlier-Robust Approximate Bayesian Computation Based on a Robust Divergence Estimator

13 Jun 2020  ·  Masahiro Fujisawa, Takeshi Teshima, Issei Sato, Masashi Sugiyama ·

Approximate Bayesian computation (ABC) is a likelihood-free inference method that has been employed in various applications. However, ABC can be sensitive to outliers if a data discrepancy measure is chosen inappropriately. In this paper, we propose to use a nearest-neighbor-based $\gamma$-divergence estimator as a data discrepancy measure. We show that our estimator possesses a suitable theoretical robustness property called the redescending property. In addition, our estimator enjoys various desirable properties such as high flexibility, asymptotic unbiasedness, almost sure convergence, and linear-time computational complexity. Through experiments, we demonstrate that our method achieves significantly higher robustness than existing discrepancy measures.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here