G2L-Net: Global to Local Network for Real-time 6D Pose Estimation with Embedding Vector Features

In this paper, we propose a novel real-time 6D object pose estimation framework, named G2L-Net. Our network operates on point clouds from RGB-D detection in a divide-and-conquer fashion... Specifically, our network consists of three steps. First, we extract the coarse object point cloud from the RGB-D image by 2D detection. Second, we feed the coarse object point cloud to a translation localization network to perform 3D segmentation and object translation prediction. Third, via the predicted segmentation and translation, we transfer the fine object point cloud into a local canonical coordinate, in which we train a rotation localization network to estimate initial object rotation. In the third step, we define point-wise embedding vector features to capture viewpoint-aware information. To calculate more accurate rotation, we adopt a rotation residual estimator to estimate the residual between initial rotation and ground truth, which can boost initial pose estimation performance. Our proposed G2L-Net is real-time despite the fact multiple steps are stacked via the proposed coarse-to-fine framework. Extensive experiments on two benchmark datasets show that G2L-Net achieves state-of-the-art performance in terms of both accuracy and speed. read more

PDF Abstract CVPR 2020 PDF CVPR 2020 Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here