GA-GAN: CT reconstruction from Biplanar DRRs using GAN with Guided Attention

27 Sep 2019  ·  Ashish Sinha, Yohei Sugawara, Yuichiro Hirano ·

This work investigates the use of guided attention in the reconstruction of CTvolumes from biplanar DRRs. We try to improve the visual image quality of the CT reconstruction using Guided Attention based GANs (GA-GAN). We also consider the use of Vector Quantization (VQ) for the CT reconstruction so that the memory usage can be reduced, maintaining the same visual image quality. To the best of our knowledge no work has been done before that explores the Vector Quantization for this purpose. Although our findings show that our approaches outperform the previous works, still there is a lot of room for improvement.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here