GAMI-Net: An Explainable Neural Network based on Generalized Additive Models with Structured Interactions

16 Mar 2020  ·  Zebin Yang, Aijun Zhang, Agus Sudjianto ·

The lack of interpretability is an inevitable problem when using neural network models in real applications. In this paper, an explainable neural network based on generalized additive models with structured interactions (GAMI-Net) is proposed to pursue a good balance between prediction accuracy and model interpretability. GAMI-Net is a disentangled feedforward network with multiple additive subnetworks; each subnetwork consists of multiple hidden layers and is designed for capturing one main effect or one pairwise interaction. Three interpretability aspects are further considered, including a) sparsity, to select the most significant effects for parsimonious representations; b) heredity, a pairwise interaction could only be included when at least one of its parent main effects exists; and c) marginal clarity, to make main effects and pairwise interactions mutually distinguishable. An adaptive training algorithm is developed, where main effects are first trained and then pairwise interactions are fitted to the residuals. Numerical experiments on both synthetic functions and real-world datasets show that the proposed model enjoys superior interpretability and it maintains competitive prediction accuracy in comparison to the explainable boosting machine and other classic machine learning models.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods