Gating Mechanisms for Combining Character and Word-level Word Representations: An Empirical Study

NAACL 2019  ·  Jorge A. Balazs, Yutaka Matsuo ·

In this paper we study how different ways of combining character and word-level representations affect the quality of both final word and sentence representations. We provide strong empirical evidence that modeling characters improves the learned representations at the word and sentence levels, and that doing so is particularly useful when representing less frequent words... We further show that a feature-wise sigmoid gating mechanism is a robust method for creating representations that encode semantic similarity, as it performed reasonably well in several word similarity datasets. Finally, our findings suggest that properly capturing semantic similarity at the word level does not consistently yield improved performance in downstream sentence-level tasks. Our code is available at https://github.com/jabalazs/gating read more

PDF Abstract NAACL 2019 PDF NAACL 2019 Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here