HHAvatar: Gaussian Head Avatar with Dynamic Hairs

Creating high-fidelity 3D head avatars has always been a research hotspot, but it remains a great challenge under lightweight sparse view setups. In this paper, we propose HHAvatar represented by controllable 3D Gaussians for high-fidelity head avatar with dynamic hair modeling. We first use 3D Gaussians to represent the appearance of the head, and then jointly optimize neutral 3D Gaussians and a fully learned MLP-based deformation field to capture complex expressions. The two parts benefit each other, thereby our method can model fine-grained dynamic details while ensuring expression accuracy. Furthermore, we devise a well-designed geometry-guided initialization strategy based on implicit SDF and Deep Marching Tetrahedra for the stability and convergence of the training procedure. To address the problem of dynamic hair modeling, we introduce a hybrid head model into our avatar representation based Gaussian Head Avatar and a training method that considers timing information and an occlusion perception module to model the non-rigid motion of hair. Experiments show that our approach outperforms other state-of-the-art sparse-view methods, achieving ultra high-fidelity rendering quality at 2K resolution even under exaggerated expressions and driving hairs reasonably with the motion of the head

PDF Abstract CVPR 2024 PDF CVPR 2024 Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here