Gaussian Process Meta-Representations For Hierarchical Neural Network Weight Priors

Bayesian inference offers a theoretically grounded and general way to train neural networks and can potentially give calibrated uncertainty. However, it is challenging to specify a meaningful and tractable prior over the network parameters, and deal with the weight correlations in the posterior. To this end, this paper introduces two innovations: (i) a Gaussian process-based hierarchical model for the network parameters based on recently introduced unit embeddings that can flexibly encode weight structures, and (ii) input-dependent contextual variables for the weight prior that can provide convenient ways to regularize the function space being modeled by the network through the use of kernels. We show these models provide desirable test-time uncertainty estimates, demonstrate cases of modeling inductive biases for neural networks with kernels and demonstrate competitive predictive performance on an active learning benchmark.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here