Gaussian process regression with Student-t likelihood

In the Gaussian process regression the observation model is commonly assumed to be Gaussian, which is convenient in computational perspective. However, the drawback is that the predictive accuracy of the model can be significantly compromised if the observations are contaminated by outliers. A robust observation model, such as the Student-t distribution, reduces the influence of outlying observations and improves the predictions. The problem, however, is the analytically intractable inference. In this work, we discuss the properties of a Gaussian process regression model with the Student-t likelihood and utilize the Laplace approximation for approximate inference. We compare our approach to a variational approximation and a Markov chain Monte Carlo scheme, which utilize the commonly used scale mixture representation of the Student-t distribution.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.