GaussiGAN: Controllable Image Synthesis with 3D Gaussians from Unposed Silhouettes

24 Jun 2021  ·  Youssef A. Mejjati, Isa Milefchik, Aaron Gokaslan, Oliver Wang, Kwang In Kim, James Tompkin ·

We present an algorithm that learns a coarse 3D representation of objects from unposed multi-view 2D mask supervision, then uses it to generate detailed mask and image texture. In contrast to existing voxel-based methods for unposed object reconstruction, our approach learns to represent the generated shape and pose with a set of self-supervised canonical 3D anisotropic Gaussians via a perspective camera, and a set of per-image transforms. We show that this approach can robustly estimate a 3D space for the camera and object, while recent baselines sometimes struggle to reconstruct coherent 3D spaces in this setting. We show results on synthetic datasets with realistic lighting, and demonstrate object insertion with interactive posing. With our work, we help move towards structured representations that handle more real-world variation in learning-based object reconstruction.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here