GCF: Generalized Causal Forest for Heterogeneous Treatment Effect Estimation in Online Marketplace

21 Mar 2022  ·  Shu Wan, Chen Zheng, Zhonggen Sun, Mengfan Xu, Xiaoqing Yang, Hongtu Zhu, Jiecheng Guo ·

Uplift modeling is a rapidly growing approach that utilizes causal inference and machine learning methods to directly estimate the heterogeneous treatment effects, which has been widely applied to various online marketplaces to assist large-scale decision-making in recent years. The existing popular models, like causal forest (CF), are limited to either discrete treatments or posing parametric assumptions on the outcome-treatment relationship that may suffer model misspecification. However, continuous treatments (e.g., price, duration) often arise in marketplaces. To alleviate these restrictions, we use a kernel-based doubly robust estimator to recover the non-parametric dose-response functions that can flexibly model continuous treatment effects. Moreover, we propose a generic distance-based splitting criterion to capture the heterogeneity for the continuous treatments. We call the proposed algorithm generalized causal forest (GCF) as it generalizes the use case of CF to a much broader setting. We show the effectiveness of GCF by deriving the asymptotic property of the estimator and comparing it to popular uplift modeling methods on both synthetic and real-world datasets. We implement GCF on Spark and successfully deploy it into a large-scale online pricing system at a leading ride-sharing company. Online A/B testing results further validate the superiority of GCF.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here