Gene Ontology (GO) Prediction using Machine Learning Methods
We applied machine learning to predict whether a gene is involved in axon regeneration. We extracted 31 features from different databases and trained five machine learning models. Our optimal model, a Random Forest Classifier with 50 submodels, yielded a test score of 85.71%, which is 4.1% higher than the baseline score. We concluded that our models have some predictive capability. Similar methodology and features could be applied to predict other Gene Ontology (GO) terms.
PDF AbstractDatasets
Add Datasets
introduced or used in this paper
Results from the Paper
Submit
results from this paper
to get state-of-the-art GitHub badges and help the
community compare results to other papers.
Methods
No methods listed for this paper. Add
relevant methods here