General Bayesian Updating and the Loss-Likelihood Bootstrap

22 Sep 2017  ·  Simon Lyddon, Chris Holmes, Stephen Walker ·

In this paper we revisit the weighted likelihood bootstrap, a method that generates samples from an approximate Bayesian posterior of a parametric model. We show that the same method can be derived, without approximation, under a Bayesian nonparametric model with the parameter of interest defined as minimising an expected negative log-likelihood under an unknown sampling distribution. This interpretation enables us to extend the weighted likelihood bootstrap to posterior sampling for parameters minimizing an expected loss. We call this method the loss-likelihood bootstrap. We make a connection between this and general Bayesian updating, which is a way of updating prior belief distributions without needing to construct a global probability model, yet requires the calibration of two forms of loss function. The loss-likelihood bootstrap is used to calibrate the general Bayesian posterior by matching asymptotic Fisher information. We demonstrate the methodology on a number of examples.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here