General Proximal Incremental Aggregated Gradient Algorithms: Better and Novel Results under General Scheme

NeurIPS 2019  ·  Tao Sun, Yuejiao Sun, Dongsheng Li, Qing Liao ·

The incremental aggregated gradient algorithm is popular in network optimization and machine learning research. However, the current convergence results require the objective function to be strongly convex... And the existing convergence rates are also limited to linear convergence. Due to the mathematical techniques, the stepsize in the algorithm is restricted by the strongly convex constant, which may make the stepsize be very small (the strongly convex constant may be small). In this paper, we propose a general proximal incremental aggregated gradient algorithm, which contains various existing algorithms including the basic incremental aggregated gradient method. Better and new convergence results are proved even with the general scheme. The novel results presented in this paper, which have not appeared in previous literature, include: a general scheme, nonconvex analysis, the sublinear convergence rates of the function values, much larger stepsizes that guarantee the convergence, the convergence when noise exists, the line search strategy of the proximal incremental aggregated gradient algorithm and its convergence. read more

PDF Abstract NeurIPS 2019 PDF NeurIPS 2019 Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here