General Table Completion using a Bayesian Nonparametric Model

NeurIPS 2014 Isabel ValeraZoubin Ghahramani

Even though heterogeneous databases can be found in a broad variety of applications, there exists a lack of tools for estimating missing data in such databases. In this paper, we provide an efficient and robust table completion tool, based on a Bayesian nonparametric latent feature model... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet