Generalizable Mixed-Precision Quantization via Attribution Rank Preservation

ICCV 2021  ·  Ziwei Wang, Han Xiao, Jiwen Lu, Jie zhou ·

In this paper, we propose a generalizable mixed-precision quantization (GMPQ) method for efficient inference. Conventional methods require the consistency of datasets for bitwidth search and model deployment to guarantee the policy optimality, leading to heavy search cost on challenging largescale datasets in realistic applications. On the contrary, our GMPQ searches the mixed-quantization policy that can be generalized to largescale datasets with only a small amount of data, so that the search cost is significantly reduced without performance degradation. Specifically, we observe that locating network attribution correctly is general ability for accurate visual analysis across different data distribution. Therefore, despite of pursuing higher model accuracy and complexity, we preserve attribution rank consistency between the quantized models and their full-precision counterparts via efficient capacity-aware attribution imitation for generalizable mixed-precision quantization strategy search. Extensive experiments show that our method obtains competitive accuracy-complexity trade-off compared with the state-of-the-art mixed-precision networks in significantly reduced search cost. The code is available at

PDF Abstract ICCV 2021 PDF ICCV 2021 Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here