Generalization in anti-causal learning

3 Dec 2018  ·  Niki Kilbertus, Giambattista Parascandolo, Bernhard Schölkopf ·

The ability to learn and act in novel situations is still a prerogative of animate intelligence, as current machine learning methods mostly fail when moving beyond the standard i.i.d. setting. What is the reason for this discrepancy? Most machine learning tasks are anti-causal, i.e., we infer causes (labels) from effects (observations). Typically, in supervised learning we build systems that try to directly invert causal mechanisms. Instead, in this paper we argue that strong generalization capabilities crucially hinge on searching and validating meaningful hypotheses, requiring access to a causal model. In such a framework, we want to find a cause that leads to the observed effect. Anti-causal models are used to drive this search, but a causal model is required for validation. We investigate the fundamental differences between causal and anti-causal tasks, discuss implications for topics ranging from adversarial attacks to disentangling factors of variation, and provide extensive evidence from the literature to substantiate our view. We advocate for incorporating causal models in supervised learning to shift the paradigm from inference only, to search and validation.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here