Generalization in Metric Learning: Should the Embedding Layer be the Embedding Layer?

8 Mar 2018  ·  Nam Vo, James Hays ·

This work studies deep metric learning under small to medium scale data as we believe that better generalization could be a contributing factor to the improvement of previous fine-grained image retrieval methods; it should be considered when designing future techniques. In particular, we investigate using other layers in a deep metric learning system (besides the embedding layer) for feature extraction and analyze how well they perform on training data and generalize to testing data... From this study, we suggest a new regularization practice where one can add or choose a more optimal layer for feature extraction. State-of-the-art performance is demonstrated on 3 fine-grained image retrieval benchmarks: Cars-196, CUB-200-2011, and Stanford Online Product. read more

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here