Generalization in quasi-periodic environments

By and large the behavior of stochastic gradient is regarded as a challenging problem, and it is often presented in the framework of statistical machine learning. This paper offers a novel view on the analysis of on-line models of learning that arises when dealing with a generalized version of stochastic gradient that is based on dissipative dynamics... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet